Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Small ; 18(39): e2106127, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36026566

ABSTRACT

Thin film catalysts, giving a different morphology, provide a significant advantage over catalyst particles for the gas evolution reaction. Taking the advantages of sputter deposition, a high entropy alloy (HEA) thin film electrocatalyst is hereby reported for the oxygen evolution reaction (OER). The catalyst characteristics are investigated not only in its as-deposited state, but also during and after the OER. For comparison, unary, binary, ternary, and quaternary thin film catalysts are prepared and characterized. The surface electronic structure modification due to the addition of a metal is studied experimentally and theoretically using density functional theory calculation. It is demonstrated that sputtered FeNiMoCrAl HEA thin film exhibits OER performance superior to all the reported HEA catalysts with robust electrocatalytic activity having a low overpotential of 220 mV at 10 mA cm-2 , and excellent electrochemical stability at different constant current densities of 10 and 100 mA cm-2 for 50 h. Furthermore, the microstructure transformation is investigated during the OER, which is important for the understanding of the OER mechanism provided by HEA electrocatalyst. Such a finding will contribute to future catalyst design.

2.
Nanoscale ; 14(37): 13532-13541, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36004452

ABSTRACT

Sustainable energy strategies, particularly solar-to-hydrogen production, are anticipated to overcome the global reliance on fossil fuels. Thereby, materials enabling the production of green hydrogen from water and sunlight are continuously designed, e.g., ZnO nanostructures coated by gold sea-urchin-like nanoparticles, which employ the light-to-plasmon resonance to realize photoelectrochemical water splitting. But such light-to-plasmon resonance is strongly impacted by the size, the species, and the concentration of the metal nanoparticles coating on the ZnO nanoflower surfaces. Therefore, a precise prediction of the surface plasmon resonance is crucial to achieving an optimized nanoparticle fabrication of the desired light-to-plasmon resonance. To this end, we synthesized a substantial amount of metal (gold) nanoparticles of different sizes and species, which are further coated on ZnO nanoflowers. Subsequently, we utilized a genetic algorithm neural network (GANN) to obtain the synergistically trained model by considering the light-to-plasmon conversion efficiencies and fabrication parameters, such as multiple metal species, precursor concentrations, surfactant concentrations, linker concentrations, and coating times. In addition, we integrated into the model's training the data of nanoparticles due to their inherent complexity, which manifests the light-to-plasmon conversion efficiency far from the coupling state. Therefore, the trained model can guide us to obtain a rapid and automatic selection of fabrication parameters of the nanoparticles with the anticipated light-to-plasmon resonance, which is more efficient than an empirical selection. The capability of the method achieved in this work furthermore demonstrates a successful projection of the light-to-plasmon conversion efficiency and contributes to an efficient selection of the fabrication parameters leading to the anticipated properties.

3.
Small ; 18(37): e2202199, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35869608

ABSTRACT

Optical rectennas extend the electromagnetic wave rectification process into the visible regime and provide a route toward high-performance photodetection and energy harvesting. Here, the promise of 2D materials toward on-chip optical rectennas is demonstrated. A self-aligned patterning process yields lateral MIM structures where a nanometer-sized air gap separates a 2D material contact from a metal electrode. This device can be scalably produced in large arrays using established microfabrication techniques. Different from previous approaches, the performance of the 2D rectenna can be adjusted through electrostatic gating. Optimization of the band alignment leads to strong rectification at wavelengths around 500 nm and clear polarization control. Comparison of wavelength-dependent rectenna performance with a photon-assisted tunneling model reveals a tenfold increase in photon-electron coupling over nanotube-based rectennas. The results highlight the potential of 2D material-based rectennas for future quantum computing applications.

4.
Biosens Bioelectron ; 211: 114339, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35588636

ABSTRACT

By D-arginine and L-arginine chiral peptides induced spin selectivity and Au NPs enhanced spin polarization, chiral peptides purification has been effectively simplified and the purification performance has raised from a mixture system. The angular momentums of light are operated by the polarizer and wave plates. Au NPs decorated ZnO nanorods electrodes are utilized to modulate the polarization of spintronic. Seed growth methods are for synthesizing spherical Au NPs. UV light reduction methods are for urchin-liked Au NPs. Au NPs are decorated on ZnO nanorods electrodes for rising photon to electron conversion efficiency and enhancing spin polarization rates by surface plasmon effect. From our results, photon to the electron conversion efficiency of ZnO nanorods electrodes has effectively enhanced by urchin-liked Au NPs decorating. Ultrahigh localized plasmon conversion efficiency as high as 60% was also obtained. Besides, density functional theory (DFT) calculations simulated the force on spintronic. Since the D-arginine and L-arginine are on Au substrate, DFT results demonstrate different angular momentum and spin polarization coupling. Along with urchin-liked Au NPs rising chiral induced spin polarization by surface plasmon resonance, the sensitivity of chiral arginine has been raised around 5000% from bare ZnO nanorods electrodes. The purification and separation time of a specific chiral arginine only needs 5 min.


Subject(s)
Biosensing Techniques , Zinc Oxide , Arginine , Gold , Peptides
5.
Nanomaterials (Basel) ; 12(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35214952

ABSTRACT

The surface plasmon resonance (SPR) effect and the hetero-junction structure play crucial roles in enhancing the photocatalytic performances of catalysts for the water-splitting reaction. In this study, a series of double perovskites LaFe1-xNixO3 was synthesized. LaFe1-xNixO3 particles were then decorated with sea urchin-like Au nanoparticles (NPs) with the average size of approximately 109.83 ± 8.48 nm via electrophoresis. The d-spacing became narrow and the absorption spectra occurred the redshift phenomenon more when doping increasing Ni mole concentrations for the raw LaFe1-xNixO3 samples. From XPS analysis, the Ni atoms were inserted into the lattice of the matrix, resulting in the defect of the oxygen vacancy, and NiO and Fe2O3 were formed. This hybrid structure was the ideal electrode for photoelectrochemical hydrogen production. The photonic extinction of the Au-coated LaFe1-xNixO3 was less than 2.1 eV (narrow band gap), and the particles absorbed more light in the visible region. According to the Mott-Schottky plots, all the LaFe1-xNixO3 samples were the n-type semiconductors. Moreover, all the band gaps of the Au-coated LaFe1-xNixO3 samples were higher than 1.23 eV (H+/H2). Then, the hot electrons from the Au NPs were injected via the SPR effect, the coupling effect between LaFe1-xNixO3 and Au NPs, and the more active sites from Au NPs into the conduction band of the semiconductor, improving the hydrogen efficiency. The H2 efficiency of the Au-coated LaFe1-xNixO3 measured in ethanol was approximately ten times larger than the that of Au-coated LaFe1-xNixO3 measured in 1-butanol at any testing temperature because ohmic and kinetic losses occurred in the latter solvent. Thus, the activation energies of ethanol at any testing temperature were smaller. The maximum real H2 production was up to 43,800 µmol g-1 h-1 in ethanol. The redox reactions among metal ions, OH*, and oxides were consecutively proceeded under visible light illumination.

6.
J Phys Chem Lett ; 12(26): 6244-6251, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34196561

ABSTRACT

A magnetic skyrmion is a topologically stable state with potential applications for realizing the next-generation spintronic devices. Here, we demonstrate the real-space observation of skyrmions in Dion-Jacobson phase perovskite, Ca2Nan-3NbnO3n+1- (CNNO), nanosheets by using optical injection. The CNNO4 and CNNO6 nanosheets exhibit weak ferromagnetics, while the CNNO5 nanosheet is superparamagnetic. The magnetic skyrmion can be clearly observed in those 2D nanosheets in the absence of the external magnetic field. First-principles calculations and micromagnetic simulations predict that the magnetic skyrmions in CNNO nanosheets is Néel-type with a diameter of 11-15 nm, in corresponding to the experiments. Our findings provide insights for developing room-temperature skyrmions in CNNO nanosheets for skyrmionic water-splitting performance in future energy generation and quantum computing devices.

7.
Colloids Surf B Biointerfaces ; 206: 111940, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34265541

ABSTRACT

Titanium (Ti)-based implants are broadly applied in the medical field, but their related infections can lead to implant failure. Photo-irradiation of metal materials to generate antimicrobial agents, an alternative to antibiotics, is a promising method to reduce bacterial infection and antibiotic usage. It is therefore important to understand how bacterial pathogens respond to Ti surfaces. Here, Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus, the most prevalent pathogens linked to healthcare-associated infections, were used as model strains. Two different kinds of Ti surfaces respectively stored in dry condition and 0.9 % NaCl solution were applied. Upon UV irradiation and in the absence of bacteria, both tested surfaces exhibited similar bactericidal activity, even though the surfaces stored in 0.9 % NaCl solution generated a slightly higher level of reactive oxygen species (ROS). Interestingly, P. aeruginosa and S. aureus responded to the irradiated Ti surfaces differently regarding interaction time: the number of viable P. aeruginosa was reduced up to 90 % after 30 min interaction with the treated surfaces compared to the untreated ones, but this reduction is lessened to 69 %-81 % after 240 min. By contrast, UV treatment of surfaces did not impact the viability of S. aureus after 30 min interaction, however, led to more than 99 % reduction after 240 min incubation. These results provide first experimental evidence that Gram negative and positive bacterial species respond to ROS with different inactivation kinetics. This work also demonstrated that treatment with photo-irradiation in the absence of bacteria conferred Ti surfaces with efficient bactericidal activity.


Subject(s)
Staphylococcus aureus , Titanium , Anti-Bacterial Agents/pharmacology , Bacteria , Pseudomonas aeruginosa , Titanium/pharmacology
8.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920302

ABSTRACT

Lateral tunnel junctions are fundamental building blocks for molecular electronics and novel sensors, but current fabrication approaches achieve device yields below 10%, which limits their appeal for circuit integration and large-scale application. We here demonstrate a new approach to reliably form nanometer-sized gaps between electrodes with high precision and unprecedented control. This advance in nanogap production is enabled by the unique properties of 2D materials-based contacts. The large difference in reactivity of 2D materials' edges compared to their basal plane results in a sequential removal of atoms from the contact perimeter. The resulting trimming of exposed graphene edges in a remote hydrogen plasma proceeds at speeds of less than 1 nm per minute, permitting accurate control of the nanogap dimension through the etching process. Carrier transport measurements reveal the high quality of the nanogap, thus-produced tunnel junctions with a 97% yield rate, which represents a tenfold increase in productivity compared to previous reports. Moreover, 70% of tunnel junctions fall within a nanogap range of only 0.5 nm, representing an unprecedented uniformity in dimension. The presented edge-trimming approach enables the conformal narrowing of gaps and produces novel one-dimensional nano-trench geometries that can sustain larger tunneling currents than conventional 0D nano-junctions. Finally, the potential of our approach for future electronics was demonstrated by the realization of an atom-based memory.

9.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670883

ABSTRACT

The success of van-der-Waals electronics, which combine large-scale-deposition capabilities with high device performance, relies on the efficient production of suitable 2D materials. Shear exfoliation of 2D materials' flakes from bulk sources can generate 2D materials with low amounts of defects, but the production yield has been limited below industry requirements. Here, we introduce additive-assisted exfoliation (AAE) as an approach to significantly increase the efficiency of shear exfoliation and produce an exfoliation yield of 30%. By introducing micrometer-sized particles that do not exfoliate, the gap between rotor and stator was dynamically reduced to increase the achievable shear rate. This enhancement was applied to WS2 and MoS2 production, which represent two of the most promising 2D transition-metal dichalcogenides. Spectroscopic characterization and cascade centrifugation reveal a consistent and significant increase in 2D material concentrations across all thickness ranges. Thus, the produced WS2 films exhibit high thickness uniformity in the nanometer-scale and can open up new routes for 2D materials production towards future applications.

10.
Adv Sci (Weinh) ; 8(6): 2002446, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747721

ABSTRACT

Herein, a new high entropy material is reported, i.e., a noble metal-free high entropy glycerate (HEG), synthesized via a simple solvothermal process. The HEG consists of 5 different metals of Fe, Ni, Co, Cr, and Mn. The unique glycerate structure exhibits an excellent oxygen evolution reaction (OER) activity with a low overpotential of 229 and 278 mV at current densities of 10 and 100 mA cm-2, respectively, in 1 m KOH electrolyte, outperforming its subsystems of binary-, ternary-, and quaternary-metal glycerates. The HEG also shows outstanding stability and durability in the alkaline electrolyte. The result demonstrates the significance of synergistic effect that gives additional freedoms to modify the electronic structure and coordination environment. Moreover, HEG@HEG electrolyzer shows a good overall water splitting performance and durability, requiring a cell voltage of 1.63 V to achieve a current density of 10 mA cm-2.

11.
ACS Appl Mater Interfaces ; 13(4): 4984-4992, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33492922

ABSTRACT

In this work, SnS-SnS2 heterostructured upright nanosheet frameworks are constructed on FTO substrates, which demonstrate promising photocatalytic performances for the conversion of CO2 and water to C2 (acetaldehyde) and C3 (acetone) hydrocarbons without H2 formation. With post annealing in designated atmospheres, the photocatalytic activity of the SnS-SnS2 heterostructured nanosheet framework is critically enhanced by increasing the fraction of crystalline SnS in nanosheets through partial transformation of the SnS2 matrix to SnS but not obviously influenced by improving the crystallinity of the SnS2 matrix. DFT calculations indicate that transformed SnS possesses the CO2 adsorption sites with significantly lower activation energy for the rate-determining step to drive efficient CO2 conversion catalysis. The experimental results and DFT calculations suggest that the SnS-SnS2 heterojunction nanosheet framework photocatalyst experiences Z-scheme charge transfer dynamic to allow the water oxidation and CO2 reduction reactions occurring on the surfaces of SnS2 and SnS, respectively. The Z-scheme SnS-SnS2 heterostructured nanosheet framework photocatalyst exhibits not only efficient charge separation but also highly catalytic active sites to boost the photocatalytic activity for CO2 conversion to C2 and C3 hydrocarbons.

12.
ACS Comb Sci ; 22(12): 858-866, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33146510

ABSTRACT

Thin films of two types of high-entropy oxides (HEOs) have been deposited on 76.2 mm Si wafers using combinatorial sputter deposition. In one type of the oxides, (MgZnMnCoNi)Ox, all the metals have a stable divalent oxidation state and similar cationic radii. In the second type of oxides, (CrFeMnCoNi)Ox, the metals are more diverse in the atomic radius and valence state, and have good solubility in their sub-binary and ternary oxide systems. The resulting HEO thin films were characterized using several high-throughput analytical techniques. The microstructure, composition, and electrical conductivity obtained on defined grid maps were obtained for the first time across large compositional ranges. The crystalline structure of the films was observed as a function of the metallic elements in the composition spreads, that is, the Mn and Zn in (MgZnMnCoNi)Ox and Mn and Ni in (CrFeMnCoNi)Ox. The (MgZnMnCoNi)Ox sample was observed to form two-phase structures, except single spinel structure was found in (MgZnMnCoNi)Ox over a range of Mn > 12 at. % and Zn < 44 at. %, while (CrFeMnCoNi)Ox was always observed to form two-phase structures. Composition-controlled crystalline structure is not only experimentally demonstrated but also supported by density function theory calculation.


Subject(s)
Combinatorial Chemistry Techniques , Entropy , Metals, Heavy/chemistry , Oxides/chemistry , Materials Testing
13.
Sci Rep ; 10(1): 5303, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32210324

ABSTRACT

As the miniaturization trend of integrated circuit continues, the leakage currents flow through the dielectric films insulating the interconnects become a critical issue. However, quantum transport through the mainstream on-chip interfaces between interconnects and dielectrics has not been addressed from first principles yet. Here, using first-principles calculations based on density functional theory and nonequilibrium Green's function formalism, we investigate the interfacial-dependent leakage currents in the Cu/α-cristobalite/Cu junctions. Our results show that the oxygen-rich interfaces form the lowest-leakage-current junction under small bias voltages, followed by the silicon-rich and oxygen-poor ones. This feature is attributed to their transmission spectra, related to their density of states and charge distributions. However, the oxygen-poor interfacial junction may conversely have a better dielectric strength than others, as its transmission gap, from -2.8 to 3.5 eV, is more symmetry respect to the Fermi level than others.

14.
Sci Rep ; 9(1): 257, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30670729

ABSTRACT

The quality of CVD-grown graphene is limited by the parallel nucleation of grains from surface impurities which leads to increased grain boundary densities. Currently employed cleaning methods cannot completely remove surface impurities since impurity diffusion from the bulk to the surface occurs during growth. We here introduce a new method to remove impurities not only on the surface but also from the bulk. By employing a solid cap during annealing that acts as a sink for impurities and leads to an enhancement of copper purity throughout the catalyst thickness. The high efficiency of the solid-diffusion-based transport pathway results in a drastic decrease in the surface particle concentration in a relatively short time, as evident in AFM and SIMS characterization of copper foils. Graphene grown on those substrates displays enhanced grain sizes and room-temperature, large-area carrier mobilities in excess of 5000 cm2/Vs which emphasizes the suitability of our approach for future graphene applications.

15.
ACS Appl Mater Interfaces ; 10(5): 5007-5013, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29337527

ABSTRACT

A firefly-like chemiluminescence reaction was utilized in a ZrO2 nanoparticle matrix of water splitting cells, where the chlorophyll of Lantana camara was used as the major photosensitizer to excite electrons to the conduction band of ZrO2. The fluorescence resonance energy transfer (FRET) was induced by rubrene, a firefly-like chemiluminescence molecule, and Lantana camara chlorophyll combined with 9,10-diphenylanthracene. The ZrO2 nanoparticle film coated by the chlorophyll of Lantana camara and 9,10-diphenylanthracene under chemiluminescence irradiation in 1 M KHCO3 water solution demonstrated the highest photocurrent density (88.1 A/m2) and the highest water splitting efficiency (12.77%).


Subject(s)
Water/chemistry , Fluorescence Resonance Energy Transfer
16.
ACS Omega ; 3(8): 9191-9195, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459053

ABSTRACT

Detection of bioprocess-interfering metal ions and molecules is important for healthcare, and peptide single-molecule junctions have shown their potential toward sensing these targets efficiently. Using first-principles calculations, we investigate the conductance of Cys-Gly-Cys and cysteamine-Gly-Gly-Cys peptide junctions, and the effect of its change upon copper-ion (Cu2+) or bisphenol A (BPA) binding. The calculated conductance of the peptides and the Cu2+-peptide complexes agrees well with the experimental data and that of the BPA-bond peptides is further predicted. Our analyses show that the conductance switching mainly comes from the structure deformation of the peptide caused by Cu2+ binding or from the new conduction channel added by BPA binding. Our results suggest that the cysteamine-Gly-Gly-Cys junction can recognize Cu2+ and BPA better than the Cys-Gly-Cys one does.

17.
Sci Rep ; 7(1): 9052, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831126

ABSTRACT

Graphene's attractiveness in many applications is limited by its high resistance. Extrinsic doping has shown promise to overcome this challenge but graphene's performance remains below industry requirements. This issue is caused by a limited charge transfer efficiency (CTE) between dopant and graphene. Using AuCl3 as a model system, we measure CTE as low as 5% of the expected values due to the geometrical capacitance of small adsorbate clusters. We here demonstrate a strategy for enhancing the CTE by a two-step optimization of graphene's surface energy prior to AuCl3 doping. First, exposure to UV ozone modified the hydrophilicity of graphene and was found to decrease the cluster's geometric capacitance, which had a direct effect on the CTE. Occurrence of lattice defects at high UV exposure, however, deteriorated graphene's transport characteristics and limited the effectiveness of this pretreatment step. Thus, prior to UV exposure, a functionalized polymer layer was introduced that could further enhance graphene's surface energy while protecting it from damage. Combination of these treatment steps were found to increase the AuCl3 charge transfer efficiency to 70% and lower the sheet resistance to 106 Ω/γ at 97% transmittance which represents the highest reported performance for doped single layer graphene and is on par with commercially available transparent conductors.

18.
Sci Rep ; 7(1): 2564, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566704

ABSTRACT

Inclusion species formed in SS400 steel with Ce-addition was predicted by thermodynamic calculation. The analysis of the inclusion morphology and size distribution was carried out by applying Scanning Electron Microscopy (SEM) and Transmission Electron Microscope (TEM). Nano-Fe3O4 particles were also found in cerium-deoxidized and -desulfurized steel and their shapes were nearly spherical. The complex Ce2O3 inclusions covering a layer of 218 nm composed by several MnS particles with similar diffraction pattern. Most importantly, the complex Ce2O3 characterized by using TEM diffraction is amorphous in the steel, indicating that Ce2O3 formed in the liquid iron and then MnS segregated cling to it.

19.
Sci Rep ; 6: 35843, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767092

ABSTRACT

Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

20.
Nanotechnology ; 27(43): 435405, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27658375

ABSTRACT

In this work, a novel configuration of the photoelectrochemical hydrogen production device is demonstrated. It is based on TiO2 beads as the primary photoanode material with the addition of a heterostructure of silver nanoparticles/graphene. The heterostructure not only caters to a great improvement in light harvesting efficiency (LHE) but also enhances the charge collection efficiency. For LHE, the optimized cell based on TiO2 beads/Ag/graphene shows a 47% gain as compared to the cell having a photoanode of commercial P25 TiO2 powders. For the charge collection efficiency, there is a pronounced improvement of an impressive value of 856%. The reason for the improvement in light absorption is attributed to either the light scattering of TiO2 beads or the surface plasmonic resonance on the Ag nanoparticles/graphene. The photoconversion efficiency (PCE) of the resulting cells is also presented and discussed. The PCE of the TiO2 beads/Ag/graphene cell is approximately 2.5 times than that of pure P25 cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...